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Based on the B-catenin-drived Wnt activator of bromoindirubin-3’-oxime (BIO), indirubin analogs were
evaluated for B-catenin-mediated gene expression. A novel indirubin analog, indirubin-5-nitro-3’-oxime
(INO), was considered a potential activator, and structure-activity studies were conducted with indiru-
bins. These data suggest that INO might be a novel Wnt activator and has a potential of signaling regu-
lator in B-catenin-mediated signaling pathways.

© 2009 Elsevier Ltd. All rights reserved.

B-Catenin protein is an essential component of cell-cell adhe-
sion and the canonical Wnt signaling pathway.! In the cell-cell
interactions B-catenin associates with the cytoplasmic end of E-
cadherin and B-catenin, and these complex at the adherence junc-
tions forms a dynamic link to the cytoskeleton.>* In the Wnt sig-
naling pathway, B-catenin plays a role as a transcriptional
activator with T-cell factor (TCF)/lymphoid enhancer factor (LEF)
DNA binding proteins.*® Generally, in the absence of Wnt signal-
ing, the level of cytoplasmic p-catenin is maintained low through
the degradation of B-catenin by the machinery of destruction com-
plex. B-Catenin is phosphorylated by the serine/threonine kinases
casein kinase I (CKI) and glycogen synthase kinase-38 (GSK-3B)
bound to a scaffolding complex of axin and adenomatous polyposis
coli (APC). The phosphorylated B-catenin is recognized by B-
transducin repeat-containing protein (B-TrCP), targeted for ubiqui-
tination, and degraded by the 26S proteosome. Activation of Wnt
signaling leads to inhibition of GSK-3pB activity, resulting in the
accumulation of cytoplasmic B-catenin and subsequently translo-
cation of B-catenin into the nucleus. The elevated level of nucleus
B-catenin leads to the complex formation with TCF/LEF transcrip-
tion factor and the complex induces target gene expression. On this
line, many evidences suggest that the Wnt signaling pathways are
involved in a variety of physiological and pathophysiological pro-
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cesses including embryonic development, tissue homeostasis,
degeneration and cancer.5~® Therefore, the agonists or antagonists
for the Wnt signaling pathways are considered useful tools
for studies of adult tissue-homeostasis, regeneration, and
embryogenesis.

In the activation of Wnt signaling one of possible mechanism of
action is through the inhibition of GSK-3p activity. Indeed, the rel-
atively selective inhibitors against GSK-3B such as pyrrole com-
pounds of SB-216763 and SB-415286 showed the potential
induction of transcription of a B-catenin-mediated gene expression
and these compounds were elucidated as potential therapeutic
effectors for diabetes disease.>'°

Recent findings also suggest that an indirubin analog 6-bromo-
indirubin-3’-oxime (BIO) displayed a remarkable selective inhibi-
tion of GSK-3p and thus BIO reduced B-catenin phosphoryaltion
on a GSK-3-specific site in cellular models (Fig. 1). These effects
are closely mimicked Wnt signaling pathway in in vivo Xenopus

BIO INO

Figure 1. Chemical structures of 6-bromoindirubin-3’-oxime (BIO) and indirubin-
5-nitro-3’-oxime (INO).
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embryo model and in human and mouse embryonic stem cells for
the maintenance of its self-renewal stemness.!! Therefore, BIO is
considered a new scaffold for the modulator of Wnt signaling
and thus providing practical applications in regenerative medicine
or other diseases including Alzheimer’s disease and diabetes.

Based on the potential of BIO as a Wnt activator and thus appli-
cable for the development of novel therapeutic agents through the
modulation of Wnt signaling, we primarily made an attempt to
evaluate indirubin analogs for procurement of novel Wnt
activators.

Indirubins are found from various natural sources including in-
digo-producing plants, bacterial strains and gastropod mollusks.
Especially, indirubin is the main active ingredient of Danggui Long-
hui Wan, a traditional Chinese medicinal recipe used for treatment
of various diseases including cancer.!? Many biological activities of
indirubins have been reported by the inhibition of several kinase
families.’>~1® Anti-proliferative effects on the human cancer cells
were to inhibit CDKs by competing in the ATP binding sites with
high selectivity. A series of the indirubin derivatives were also
developed for the treatment of Alzheimer’s disease (AD) through
inhibiting GSK-3B and CDKS5, which are related to the control of
the abnormal hyperphosphorylation of the microtubule-binding
protein tau, one of the diagnostic characteristics of AD.!” In addi-
tion, indirubins have been revealed as potent ligands of the aryl
hydrocarbon receptor and inhibitors of c-Jun NH,-terminal kinase
(JNK).'® More recently, some indirubin derivatives were identified
as potent and selective GSK-3 inhibitors such as BIO and were con-
sidered as Wnt activators.!' We here report an identification of
some additional novel Wnt activators from a series of indirubin
derivatives synthesized in our previous study for the inhibitory
activity of CDK.'*

First, in order to determine the activation of Wnt pathway, we
used human embryonic kidney cells (HEK293) which have tran-
siently transfected with a Tcf-luciferase transcription reporter
(pTOPFlash). This transcription reporter generates luciferase in re-
sponse to the activation of B-catenin-mediated Tcf/Lef transcrip-
tional activation.!® By employing this assay system we primarily
evaluated the TOPFlash activity with various concentrations of
BIO for an incubation of 24 h. As shown in Figure 2, BIO signifi-
cantly increased the luciferase activity in a concentration-depen-
dent manner, suggesting BIO is a B-catenin-drived Wnt activator.
On this line, for procurement of novel Wnt activator with the sim-
ilar chemical characteristics in BIO, we evaluated several indirubin
derivatives on B-catenin-mediated target gene expression with
TOPFlash assay.
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Figure 2. 6-Bromoindirubin-3’-oxime (BIO) activates B-catenin-mediated Tcf/Lef
reporter construct ('p<0.05 was considered statistically significant compared to
vehicle-treated control group).
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Figure 3. TOPFlash activity of indirubin derivatives (‘p<0.05 was considered
statistically significant compared to vehicle-treated control group).

As shown in Figure 3, co-treatment of pB-catenin (8 ng) and
pTcf4 (1 ng) induced the TOPFlash activity with approximately
15-fold compared to only pTOPFlash transfected group. Employing
the assay system primarily indirubin derivatives (250 nM) were
simultaneously treated with pp-catenin (8 ng) and pTcf 4 (1 ng)
and evaluated in the B-catenin/Tcf-mediated luciferase activity
(TOPFlash activity). Indirubin exhibited a moderate activating ef-
fect on the assay (~2.0-fold induction compared to vehicle-treated
control group). Several compounds also showed potential activa-
tion in this capacity. Among them, indirubin-5-nitro-3’-oxime
(INO) exhibited the most potent activation effect (~4.2-fold induc-
tion) (Table 1). In terms of structure-activity relationship of indiru-
bin-3’-oxime derivatives, compounds 3 and 5 which have R? with
alkyl-substituted amide functional groups (-NCOR) showed rela-

Table 1
Effects of indirubin and its derivatives on B-catenin-mediated Tcf/Lef reporter gene
activity (TOPFlash)

RZ
R3
R NOH O
E N NH
H
o}

1 (Indirubin)
Compound R' R? R3 Fold induction*
1 (Indirubin) H H H 2.04
2 H H Br 2.70
(0)
3 H >+ H 1.51
—NH
9
4 Br —N H 166
o
(0]
5 H NN H 1.89
H
6 H Cl H 3.46
2
7 (INO) H —NF H 420

o

*Fold induction was calculated by the comparison of TOPFlash activity between the
compound-treated group and vehicle-treated control group.
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Figure 4. Dose-dependent induction of p-catenin-mediated Tcf/Lef transcriptional
activity of INO (‘p<0.05 was considered statistically significant compared to
vehicle-treated control group).
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Figure 5. Effects of INO (250 nM) on the phosphorylation and expression of GSK-3B
and B-catenin. B-Actin was used as an internal standard.

tively low activities compared to INO. On the other hand, com-
pounds 6 which substituted with Cl at R? position exhibited a po-
tential induction (~3.5-fold). Therefore, the introduction of an
electronegativity at R? position seems to affect the increase of TOP-
Flash activity. However, in comparison with INO, the introduction
of Br at R' position caused dramatic decrease of the activity. It sug-
gests that the introduction of an electrowithdrawing group in Ring
A might decrease the TOPFlash activity.

In addition, INO was comparable to the known Wnt activator
BIO (~2.7-fold induction), and was dose-dependent induction of
reporter gene activity (Fig. 4).

Further study was designed to determine whether INO affects to
the modulation of B-catenin and its upstream molecule GSK-38
expression in Wnt activating pathway. As shown in Figure 5, Wes-
tern blot analysis2° showed that INO treatment increased the phos-
phorylation at Ser9 of GSK-3B and oppositely decreased the
phosphorylation at Tyr216 of GSK-3p in HEK293 cells, leading to
the inactivation of GSK-3B. GSK-3p is known to destabilize p-cate-
nin by phosphorylating at Ser33, Ser37 and Thr41.!” Therefore, the
inactivation of GSK-3p resulted in the decreased phosphorylation
of B-catenin at Ser34/37/Thr41 residues, leading to the accumula-
tion of B-catenin. Consequently, the accumulated B-catenin in
cytosol was translocated into nucleus and then promoted the Tcf/
Lef transcriptional activity (TOPFlash).

In summary, the present study demonstrates that a novel
indirubin derivative, indirubin-5-nitro-3’-monoxime (INO), might
be served as a novel Wnt activator and thus has a potential candi-

date for the development of therapeutic agents in the modulation
of Wnt signaling pathway.
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